Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cover and Hitting Times of Hyperbolic Random Graphs (2207.06956v3)

Published 14 Jul 2022 in math.PR, cs.DM, and math.CO

Abstract: We study random walks on the giant component of Hyperbolic Random Graphs (HRGs), in the regime when the degree distribution obeys a power law with exponent in the range $(2,3)$. In particular, we first focus on the expected time for a random walk to hit a given vertex or visit, i.e. cover, all vertices. We show that, a.a.s. (with respect to the HRG), and up to multiplicative constants: the cover time is $n(\log n)2$, the maximum hitting time is $n\log n$, and the average hitting time is $n$. We then determine the expected time to commute between two given vertices a.a.s., up to a small factor polylogarithmic in $n$, and under some mild hypothesis on the pair of vertices involved. Our results are proved by controlling effective resistances using the energy dissipated by carefully designed network flows associated to a tiling of the hyperbolic plane, on which we overlay a forest-like structure.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.