Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Double-Loop Importance Sampling for McKean--Vlasov Stochastic Differential Equation (2207.06926v5)

Published 14 Jul 2022 in math.NA, cs.NA, and stat.CO

Abstract: This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with solutions to the $d$-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting $P$-particle system, which is a set of $P$ coupled $d$-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a $P \times d$-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in [dos Reis et al., 2023], generating a $d$-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of $\mathcal{O}(\mathrm{TOL}{\mathrm{r}}{-4})$ with a significantly reduced constant to achieve a prescribed relative error tolerance $\mathrm{TOL}{\mathrm{r}}$. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given $\mathrm{TOL}_{\mathrm{r}}$ compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.