Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep versus Wide: An Analysis of Student Architectures for Task-Agnostic Knowledge Distillation of Self-Supervised Speech Models (2207.06867v2)

Published 14 Jul 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Self-supervised learning (SSL) is seen as a very promising approach with high performance for several speech downstream tasks. Since the parameters of SSL models are generally so large that training and inference require a lot of memory and computational cost, it is desirable to produce compact SSL models without a significant performance degradation by applying compression methods such as knowledge distillation (KD). Although the KD approach is able to shrink the depth and/or width of SSL model structures, there has been little research on how varying the depth and width impacts the internal representation of the small-footprint model. This paper provides an empirical study that addresses the question. We investigate the performance on SUPERB while varying the structure and KD methods so as to keep the number of parameters constant; this allows us to analyze the contribution of the representation introduced by varying the model architecture. Experiments demonstrate that a certain depth is essential for solving content-oriented tasks (e.g. automatic speech recognition) accurately, whereas a certain width is necessary for achieving high performance on several speaker-oriented tasks (e.g. speaker identification). Based on these observations, we identify, for SUPERB, a more compressed model with better performance than previous studies.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.