Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Two-Pass Low Latency End-to-End Spoken Language Understanding (2207.06670v2)

Published 14 Jul 2022 in cs.CL, cs.SD, and eess.AS

Abstract: End-to-end (E2E) models are becoming increasingly popular for spoken language understanding (SLU) systems and are beginning to achieve competitive performance to pipeline-based approaches. However, recent work has shown that these models struggle to generalize to new phrasings for the same intent indicating that models cannot understand the semantic content of the given utterance. In this work, we incorporated LLMs pre-trained on unlabeled text data inside E2E-SLU frameworks to build strong semantic representations. Incorporating both semantic and acoustic information can increase the inference time, leading to high latency when deployed for applications like voice assistants. We developed a 2-pass SLU system that makes low latency prediction using acoustic information from the few seconds of the audio in the first pass and makes higher quality prediction in the second pass by combining semantic and acoustic representations. We take inspiration from prior work on 2-pass end-to-end speech recognition systems that attends on both audio and first-pass hypothesis using a deliberation network. The proposed 2-pass SLU system outperforms the acoustic-based SLU model on the Fluent Speech Commands Challenge Set and SLURP dataset and reduces latency, thus improving user experience. Our code and models are publicly available as part of the ESPnet-SLU toolkit.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.