Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving the Accuracy of Marginal Approximations in Likelihood-Free Inference via Localisation (2207.06655v1)

Published 14 Jul 2022 in stat.ME, stat.CO, and stat.ML

Abstract: Likelihood-free methods are an essential tool for performing inference for implicit models which can be simulated from, but for which the corresponding likelihood is intractable. However, common likelihood-free methods do not scale well to a large number of model parameters. A promising approach to high-dimensional likelihood-free inference involves estimating low-dimensional marginal posteriors by conditioning only on summary statistics believed to be informative for the low-dimensional component, and then combining the low-dimensional approximations in some way. In this paper, we demonstrate that such low-dimensional approximations can be surprisingly poor in practice for seemingly intuitive summary statistic choices. We describe an idealized low-dimensional summary statistic that is, in principle, suitable for marginal estimation. However, a direct approximation of the idealized choice is difficult in practice. We thus suggest an alternative approach to marginal estimation which is easier to implement and automate. Given an initial choice of low-dimensional summary statistic that might only be informative about a marginal posterior location, the new method improves performance by first crudely localising the posterior approximation using all the summary statistics to ensure global identifiability, followed by a second step that hones in on an accurate low-dimensional approximation using the low-dimensional summary statistic. We show that the posterior this approach targets can be represented as a logarithmic pool of posterior distributions based on the low-dimensional and full summary statistics, respectively. The good performance of our method is illustrated in several examples.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.