Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

You Only Align Once: Bidirectional Interaction for Spatial-Temporal Video Super-Resolution (2207.06345v1)

Published 13 Jul 2022 in cs.CV

Abstract: Spatial-Temporal Video Super-Resolution (ST-VSR) technology generates high-quality videos with higher resolution and higher frame rates. Existing advanced methods accomplish ST-VSR tasks through the association of Spatial and Temporal video super-resolution (S-VSR and T-VSR). These methods require two alignments and fusions in S-VSR and T-VSR, which is obviously redundant and fails to sufficiently explore the information flow of consecutive spatial LR frames. Although bidirectional learning (future-to-past and past-to-future) was introduced to cover all input frames, the direct fusion of final predictions fails to sufficiently exploit intrinsic correlations of bidirectional motion learning and spatial information from all frames. We propose an effective yet efficient recurrent network with bidirectional interaction for ST-VSR, where only one alignment and fusion is needed. Specifically, it first performs backward inference from future to past, and then follows forward inference to super-resolve intermediate frames. The backward and forward inferences are assigned to learn structures and details to simplify the learning task with joint optimizations. Furthermore, a Hybrid Fusion Module (HFM) is designed to aggregate and distill information to refine spatial information and reconstruct high-quality video frames. Extensive experiments on two public datasets demonstrate that our method outperforms state-of-the-art methods in efficiency, and reduces calculation cost by about 22%.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube