Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SATTS: Speaker Attractor Text to Speech, Learning to Speak by Learning to Separate (2207.06011v1)

Published 13 Jul 2022 in eess.AS and cs.SD

Abstract: The mapping of text to speech (TTS) is non-deterministic, letters may be pronounced differently based on context, or phonemes can vary depending on various physiological and stylistic factors like gender, age, accent, emotions, etc. Neural speaker embeddings, trained to identify or verify speakers are typically used to represent and transfer such characteristics from reference speech to synthesized speech. Speech separation on the other hand is the challenging task of separating individual speakers from an overlapping mixed signal of various speakers. Speaker attractors are high-dimensional embedding vectors that pull the time-frequency bins of each speaker's speech towards themselves while repelling those belonging to other speakers. In this work, we explore the possibility of using these powerful speaker attractors for zero-shot speaker adaptation in multi-speaker TTS synthesis and propose speaker attractor text to speech (SATTS). Through various experiments, we show that SATTS can synthesize natural speech from text from an unseen target speaker's reference signal which might have less than ideal recording conditions, i.e. reverberations or mixed with other speakers.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.