Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Active Regression (2207.05945v2)

Published 13 Jul 2022 in cs.LG, cs.DS, and stat.ML

Abstract: Active regression considers a linear regression problem where the learner receives a large number of data points but can only observe a small number of labels. Since online algorithms can deal with incremental training data and take advantage of low computational cost, we consider an online extension of the active regression problem: the learner receives data points one by one and immediately decides whether it should collect the corresponding labels. The goal is to efficiently maintain the regression of received data points with a small budget of label queries. We propose novel algorithms for this problem under $\ell_p$ loss where $p\in[1,2]$. To achieve a $(1+\epsilon)$-approximate solution, our proposed algorithms only require $\tilde{\mathcal{O}}(\epsilon{-1} d \log(n\kappa))$ queries of labels, where $n$ is the number of data points and $\kappa$ is a quantity, called the condition number, of the data points. The numerical results verify our theoretical results and show that our methods have comparable performance with offline active regression algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.