Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture-guided Saliency Distilling for Unsupervised Salient Object Detection (2207.05921v3)

Published 13 Jul 2022 in cs.CV

Abstract: Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the noisy labels problem, a class of methods focus on only easy samples with reliable labels but ignore valuable knowledge in hard samples. In this paper, we propose a novel USOD method to mine rich and accurate saliency knowledge from both easy and hard samples. First, we propose a Confidence-aware Saliency Distilling (CSD) strategy that scores samples conditioned on samples' confidences, which guides the model to distill saliency knowledge from easy samples to hard samples progressively. Second, we propose a Boundary-aware Texture Matching (BTM) strategy to refine the boundaries of noisy labels by matching the textures around the predicted boundary. Extensive experiments on RGB, RGB-D, RGB-T, and video SOD benchmarks prove that our method achieves state-of-the-art USOD performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Huajun Zhou (12 papers)
  2. Bo Qiao (18 papers)
  3. Lingxiao Yang (24 papers)
  4. Jianhuang Lai (43 papers)
  5. Xiaohua Xie (41 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com