Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Cyclical Approach to Synthetic and Natural Speech Mismatch Refinement of Neural Post-filter for Low-cost Text-to-speech System (2207.05913v1)

Published 13 Jul 2022 in eess.AS and cs.SD

Abstract: Neural-based text-to-speech (TTS) systems achieve very high-fidelity speech generation because of the rapid neural network developments. However, the huge labeled corpus and high computation cost requirements limit the possibility of developing a high-fidelity TTS system by small companies or individuals. On the other hand, a neural vocoder, which has been widely adopted for the speech generation in neural-based TTS systems, can be trained with a relatively small unlabeled corpus. Therefore, in this paper, we explore a general framework to develop a neural post-filter (NPF) for low-cost TTS systems using neural vocoders. A cyclical approach is proposed to tackle the acoustic and temporal mismatches (AM and TM) of developing an NPF. Both objective and subjective evaluations have been conducted to demonstrate the AM and TM problems and the effectiveness of the proposed framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.