Testing and Learning Quantum Juntas Nearly Optimally (2207.05898v3)
Abstract: We consider the problem of testing and learning quantum $k$-juntas: $n$-qubit unitary matrices which act non-trivially on just $k$ of the $n$ qubits and as the identity on the rest. As our main algorithmic results, we give (a) a $\widetilde{O}(\sqrt{k})$-query quantum algorithm that can distinguish quantum $k$-juntas from unitary matrices that are "far" from every quantum $k$-junta; and (b) a $O(4k)$-query algorithm to learn quantum $k$-juntas. We complement our upper bounds for testing quantum $k$-juntas and learning quantum $k$-juntas with near-matching lower bounds of $\Omega(\sqrt{k})$ and $\Omega(\frac{4k}{k})$, respectively. Our techniques are Fourier-analytic and make use of a notion of influence of qubits on unitaries.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.