Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal tuning-free convex relaxation for noisy matrix completion (2207.05802v2)

Published 12 Jul 2022 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: This paper is concerned with noisy matrix completion--the problem of recovering a low-rank matrix from partial and noisy entries. Under uniform sampling and incoherence assumptions, we prove that a tuning-free square-root matrix completion estimator (square-root MC) achieves optimal statistical performance for solving the noisy matrix completion problem. Similar to the square-root Lasso estimator in high-dimensional linear regression, square-root MC does not rely on the knowledge of the size of the noise. While solving square-root MC is a convex program, our statistical analysis of square-root MC hinges on its intimate connections to a nonconvex rank-constrained estimator.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)