Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploring Adversarial Examples and Adversarial Robustness of Convolutional Neural Networks by Mutual Information (2207.05756v2)

Published 12 Jul 2022 in cs.LG and cs.AI

Abstract: A counter-intuitive property of convolutional neural networks (CNNs) is their inherent susceptibility to adversarial examples, which severely hinders the application of CNNs in security-critical fields. Adversarial examples are similar to original examples but contain malicious perturbations. Adversarial training is a simple and effective defense method to improve the robustness of CNNs to adversarial examples. The mechanisms behind adversarial examples and adversarial training are worth exploring. Therefore, this work investigates similarities and differences between normally trained CNNs (NT-CNNs) and adversarially trained CNNs (AT-CNNs) in information extraction from the mutual information perspective. We show that 1) whether NT-CNNs or AT-CNNs, for original and adversarial examples, the trends towards mutual information are almost similar throughout training; 2) compared with normal training, adversarial training is more difficult and the amount of information that AT-CNNs extract from the input is less; 3) the CNNs trained with different methods have different preferences for certain types of information; NT-CNNs tend to extract texture-based information from the input, while AT-CNNs prefer to shape-based information. The reason why adversarial examples mislead CNNs may be that they contain more texture-based information about other classes. Furthermore, we also analyze the mutual information estimators used in this work and find that they outline the geometric properties of the middle layer's output.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.