Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The $hp$-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect (2207.05542v5)

Published 12 Jul 2022 in math.AP, cs.NA, and math.NA

Abstract: We consider approximation of the variable-coefficient Helmholtz equation in the exterior of a Dirichlet obstacle using perfectly-matched-layer (PML) truncation; it is well known that this approximation is exponentially accurate in the PML width and the scaling angle, and the approximation was recently proved to be exponentially accurate in the wavenumber $k$ in [Galkowski, Lafontaine, Spence, 2021]. We show that the $hp$-FEM applied to this problem does not suffer from the pollution effect, in that there exist $C_1,C_2>0$ such that if $hk/p\leq C_1$ and $p \geq C_2 \log k$ then the Galerkin solutions are quasioptimal (with constant independent of $k$), under the following two conditions (i) the solution operator of the original Helmholtz problem is polynomially bounded in $k$ (which occurs for "most" $k$ by [Lafontaine, Spence, Wunsch, 2021]), and (ii) either there is no obstacle and the coefficients are smooth or the obstacle is analytic and the coefficients are analytic in a neighbourhood of the obstacle and smooth elsewhere. This $hp$-FEM result is obtained via a decomposition of the PML solution into "high-" and "low-frequency" components, analogous to the decomposition for the original Helmholtz solution recently proved in [Galkowski, Lafontaine, Spence, Wunsch, 2022]. The decomposition is obtained using tools from semiclassical analysis (i.e., the PDE techniques specifically designed for studying Helmholtz problems with large $k$).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.