Papers
Topics
Authors
Recent
2000 character limit reached

Dual Contrastive Learning for Spatio-temporal Representation (2207.05340v1)

Published 12 Jul 2022 in cs.CV

Abstract: Contrastive learning has shown promising potential in self-supervised spatio-temporal representation learning. Most works naively sample different clips to construct positive and negative pairs. However, we observe that this formulation inclines the model towards the background scene bias. The underlying reasons are twofold. First, the scene difference is usually more noticeable and easier to discriminate than the motion difference. Second, the clips sampled from the same video often share similar backgrounds but have distinct motions. Simply regarding them as positive pairs will draw the model to the static background rather than the motion pattern. To tackle this challenge, this paper presents a novel dual contrastive formulation. Concretely, we decouple the input RGB video sequence into two complementary modes, static scene and dynamic motion. Then, the original RGB features are pulled closer to the static features and the aligned dynamic features, respectively. In this way, the static scene and the dynamic motion are simultaneously encoded into the compact RGB representation. We further conduct the feature space decoupling via activation maps to distill static- and dynamic-related features. We term our method as \textbf{D}ual \textbf{C}ontrastive \textbf{L}earning for spatio-temporal \textbf{R}epresentation (DCLR). Extensive experiments demonstrate that DCLR learns effective spatio-temporal representations and obtains state-of-the-art or comparable performance on UCF-101, HMDB-51, and Diving-48 datasets.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.