Papers
Topics
Authors
Recent
2000 character limit reached

Certified Adversarial Robustness via Anisotropic Randomized Smoothing (2207.05327v2)

Published 12 Jul 2022 in cs.CV

Abstract: Randomized smoothing has achieved great success for certified robustness against adversarial perturbations. Given any arbitrary classifier, randomized smoothing can guarantee the classifier's prediction over the perturbed input with provable robustness bound by injecting noise into the classifier. However, all of the existing methods rely on fixed i.i.d. probability distribution to generate noise for all dimensions of the data (e.g., all the pixels in an image), which ignores the heterogeneity of inputs and data dimensions. Thus, existing randomized smoothing methods cannot provide optimal protection for all the inputs. To address this limitation, we propose a novel anisotropic randomized smoothing method which ensures provable robustness guarantee based on pixel-wise noise distributions. Also, we design a novel CNN-based noise generator to efficiently fine-tune the pixel-wise noise distributions for all the pixels in each input. Experimental results demonstrate that our method significantly outperforms the state-of-the-art randomized smoothing methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.