Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Certified Adversarial Robustness via Anisotropic Randomized Smoothing (2207.05327v2)

Published 12 Jul 2022 in cs.CV

Abstract: Randomized smoothing has achieved great success for certified robustness against adversarial perturbations. Given any arbitrary classifier, randomized smoothing can guarantee the classifier's prediction over the perturbed input with provable robustness bound by injecting noise into the classifier. However, all of the existing methods rely on fixed i.i.d. probability distribution to generate noise for all dimensions of the data (e.g., all the pixels in an image), which ignores the heterogeneity of inputs and data dimensions. Thus, existing randomized smoothing methods cannot provide optimal protection for all the inputs. To address this limitation, we propose a novel anisotropic randomized smoothing method which ensures provable robustness guarantee based on pixel-wise noise distributions. Also, we design a novel CNN-based noise generator to efficiently fine-tune the pixel-wise noise distributions for all the pixels in each input. Experimental results demonstrate that our method significantly outperforms the state-of-the-art randomized smoothing methods.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)