Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Know Your Space: Inlier and Outlier Construction for Calibrating Medical OOD Detectors (2207.05286v2)

Published 12 Jul 2022 in cs.CV and cs.LG

Abstract: We focus on the problem of producing well-calibrated out-of-distribution (OOD) detectors, in order to enable safe deployment of medical image classifiers. Motivated by the difficulty of curating suitable calibration datasets, synthetic augmentations have become highly prevalent for inlier/outlier specification. While there have been rapid advances in data augmentation techniques, this paper makes a striking finding that the space in which the inliers and outliers are synthesized, in addition to the type of augmentation, plays a critical role in calibrating OOD detectors. Using the popular energy-based OOD detection framework, we find that the optimal protocol is to synthesize latent-space inliers along with diverse pixel-space outliers. Based on empirical studies with multiple medical imaging benchmarks, we demonstrate that our approach consistently leads to superior OOD detection ($15\% - 35\%$ in AUROC) over the state-of-the-art in a variety of open-set recognition settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.