Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A fifth-order finite difference HWENO scheme combined with limiter for hyperbolic conservation laws (2207.05258v1)

Published 12 Jul 2022 in math.NA and cs.NA

Abstract: In this paper, a simple fifth-order finite difference Hermite WENO (HWENO) scheme combined with limiter is proposed for one- and two- dimensional hyperbolic conservation laws. The fluxes in the governing equation are approximated by the nonlinear HWENO reconstruction which is the combination of a quintic polynomial with two quadratic polynomials, where the linear weights can be artificial positive numbers only if the sum equals one. And other fluxes in the derivative equations are approximated by high-degree polynomials directly. For the purpose of controlling spurious oscillations, an HWENO limiter is applied to modify the derivatives. Instead of using the modified derivatives both in fluxes reconstruction and time discretization as in the modified HWENO scheme (J. Sci. Comput., 85:29, 2020), we only apply the modified derivatives in time discretization while remaining the original derivatives in fluxes reconstruction. Comparing with the modified HWENO scheme, the proposed HWENO scheme is simpler, more accurate, efficient and higher resolution. In addition, the HWENO scheme has a more compact spatial reconstructed stencil and greater efficiency than the classical fifth-order finite difference WENO scheme of Jiang and Shu. Various benchmark numerical examples are presented to show the fifth-order accuracy, great efficiency, high resolution and robustness of the proposed HWENO scheme.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)