Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting (2207.05064v1)

Published 9 Jul 2022 in cs.LG and cs.AI

Abstract: Traffic flow forecasting on graphs has real-world applications in many fields, such as transportation system and computer networks. Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns. Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately and fail to model the direct spatial-temporal correlations. Inspired by the recent success of transformers in the graph domain, in this paper, we propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions. To reduce the time complexity, we set the attention receptive field to the spatially neighboring nodes, and we also introduce an adaptive graph to capture the hidden spatial-temporal dependencies. Based on these attention mechanisms, we propose a novel Adaptive Graph Spatial-Temporal Transformer Network (ASTTN), which stacks multiple spatial-temporal attention layers to apply self-attention on the input graph, followed by linear layers for predictions. Experimental results on public traffic network datasets, METR-LA PEMS-BAY, PeMSD4, and PeMSD7, demonstrate the superior performance of our model.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.