Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Killing a Vortex (2207.04923v4)

Published 11 Jul 2022 in math.CO, cs.DM, and cs.DS

Abstract: The Graph Minors Structure Theorem of Robertson and Seymour asserts that, for every graph $H,$ every $H$-minor-free graph can be obtained by clique-sums of almost embeddable'' graphs. Here a graph isalmost embeddable'' if it can be obtained from a graph of bounded Euler-genus by pasting graphs of bounded pathwidth in an ``orderly fashion'' into a bounded number of faces, called the \textit{vortices}, and then adding a bounded number of additional vertices, called \textit{apices}, with arbitrary neighborhoods. Our main result is a {full classification} of all graphs $H$ for which the use of vortices in the theorem above can be avoided. To this end we identify a (parametric) graph $\mathscr{S}{t}$ and prove that all $\mathscr{S}{t}$-minor-free graphs can be obtained by clique-sums of graphs embeddable in a surface of bounded Euler-genus after deleting a bounded number of vertices. We show that this result is tight in the sense that the appearance of vortices cannot be avoided for $H$-minor-free graphs, whenever $H$ is not a minor of $\mathscr{S}{t}$ for some $t\in\mathbb{N}.$ Using our new structure theorem, we design an algorithm that, given an $\mathscr{S}{t}$-minor-free graph $G,$ computes the generating function of all perfect matchings of $G$ in polynomial time. Our results, combined with known complexity results, imply a complete characterization of minor-closed graph classes where the number of perfect matchings is polynomially computable: They are exactly those graph classes that do not contain every $\mathscr{S}_{t}$ as a minor. This provides a \textit{sharp} complexity dichotomy for the problem of counting perfect matchings in minor-closed classes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube