Emergent Mind

(Nearly) Optimal Private Linear Regression via Adaptive Clipping

(2207.04686)
Published Jul 11, 2022 in cs.LG , cs.CR , math.OC , and stat.ML

Abstract

We study the problem of differentially private linear regression where each data point is sampled from a fixed sub-Gaussian style distribution. We propose and analyze a one-pass mini-batch stochastic gradient descent method (DP-AMBSSGD) where points in each iteration are sampled without replacement. Noise is added for DP but the noise standard deviation is estimated online. Compared to existing $(\epsilon, \delta)$-DP techniques which have sub-optimal error bounds, DP-AMBSSGD is able to provide nearly optimal error bounds in terms of key parameters like dimensionality $d$, number of points $N$, and the standard deviation $\sigma$ of the noise in observations. For example, when the $d$-dimensional covariates are sampled i.i.d. from the normal distribution, then the excess error of DP-AMBSSGD due to privacy is $\frac{\sigma2 d}{N}(1+\frac{d}{\epsilon2 N})$, i.e., the error is meaningful when number of samples $N= \Omega(d \log d)$ which is the standard operative regime for linear regression. In contrast, error bounds for existing efficient methods in this setting are: $\mathcal{O}\big(\frac{d3}{\epsilon2 N2}\big)$, even for $\sigma=0$. That is, for constant $\epsilon$, the existing techniques require $N=\Omega(d\sqrt{d})$ to provide a non-trivial result.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.