Emergent Mind

Abstract

In its simplest form, a chemostat consists of microorganisms or cells that grow continually in a specific phase of growth while competing for a single limiting nutrient. Under certain conditions of the cell growth rate, substrate concentration, and dilution rate, the theory predicts and numerical experiments confirm that a periodically operated chemostat exhibits an "overyielding" state in which the performance becomes higher than that at steady-state operation. In this paper, we show that an optimal periodic control policy for maximizing chemostat performance can be accurately and efficiently derived numerically using a novel class of integral pseudospectral (IPS) methods and adaptive h-IPS methods composed through a predictor-corrector algorithm. New formulas for the construction of Fourier pseudospectral (PS) integration matrices and barycentric-shifted Gegenbauer (SG) quadratures are derived. A rigorous study of the errors and convergence rates of SG quadratures, as well as the truncated Fourier series, interpolation operators, and integration operators for nonsmooth and generally T-periodic functions, is presented. We also introduce a novel adaptive scheme for detecting jump discontinuities and reconstructing a piecewise analytic function from PS data. An extensive set of numerical simulations is presented to support the derived theoretical foundations.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.