Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Register Unbalanced Point Pairs (2207.04221v2)

Published 9 Jul 2022 in cs.CV

Abstract: Point cloud registration methods can effectively handle large-scale, partially overlapping point cloud pairs. Despite its practicality, matching the unbalanced pairs in terms of spatial extent and density has been overlooked and rarely studied. We present a novel method, dubbed UPPNet, for Unbalanced Point cloud Pair registration. We propose to incorporate a hierarchical framework that effectively finds inlier correspondences by gradually reducing search space. The proposed method first predicts subregions within target point cloud that are likely to be overlapped with query. Then following super-point matching and fine-grained refinement modules predict accurate inlier correspondences between the target and query. Additional geometric constraints are applied to refine the correspondences that satisfy spatial compatibility. The proposed network can be trained in an end-to-end manner, predicting the accurate rigid transformation with a single forward pass. To validate the efficacy of the proposed method, we create a carefully designed benchmark, named KITTI-UPP dataset, by augmenting the KITTI odometry dataset. Extensive experiments reveal that the proposed method not only outperforms state-of-the-art point cloud registration methods by large margins on KITTI-UPP benchmark, but also achieves competitive results on the standard pairwise registration benchmark including 3DMatch, 3DLoMatch, ScanNet, and KITTI, thus showing the applicability of our method on various datasets. The source code and dataset will be publicly released.

Citations (6)

Summary

We haven't generated a summary for this paper yet.