Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning to Register Unbalanced Point Pairs (2207.04221v2)

Published 9 Jul 2022 in cs.CV

Abstract: Point cloud registration methods can effectively handle large-scale, partially overlapping point cloud pairs. Despite its practicality, matching the unbalanced pairs in terms of spatial extent and density has been overlooked and rarely studied. We present a novel method, dubbed UPPNet, for Unbalanced Point cloud Pair registration. We propose to incorporate a hierarchical framework that effectively finds inlier correspondences by gradually reducing search space. The proposed method first predicts subregions within target point cloud that are likely to be overlapped with query. Then following super-point matching and fine-grained refinement modules predict accurate inlier correspondences between the target and query. Additional geometric constraints are applied to refine the correspondences that satisfy spatial compatibility. The proposed network can be trained in an end-to-end manner, predicting the accurate rigid transformation with a single forward pass. To validate the efficacy of the proposed method, we create a carefully designed benchmark, named KITTI-UPP dataset, by augmenting the KITTI odometry dataset. Extensive experiments reveal that the proposed method not only outperforms state-of-the-art point cloud registration methods by large margins on KITTI-UPP benchmark, but also achieves competitive results on the standard pairwise registration benchmark including 3DMatch, 3DLoMatch, ScanNet, and KITTI, thus showing the applicability of our method on various datasets. The source code and dataset will be publicly released.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.