Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Stackelberg Strategies for Finitely Repeated Games (2207.04192v3)

Published 9 Jul 2022 in cs.GT

Abstract: We study Stackelberg equilibria in finitely repeated games, where the leader commits to a strategy that picks actions in each round and can be adaptive to the history of play (i.e. they commit to an algorithm). In particular, we study static repeated games with no discounting. We give efficient algorithms for finding approximate Stackelberg equilibria in this setting, along with rates of convergence depending on the time horizon $T$. In many cases, these algorithms allow the leader to do much better on average than they can in the single-round Stackelberg. We give two algorithms, one computing strategies with an optimal $\frac{1}{T}$ rate at the expense of an exponential dependence on the number of actions, and another (randomized) approach computing strategies with no dependence on the number of actions but a worse dependence on $T$ of $\frac{1}{T{0.25}}$. Both algorithms build upon a linear program to produce simple automata leader strategies and induce corresponding automata best-responses for the follower. We complement these results by showing that approximating the Stackelberg value in three-player finite-horizon repeated games is a computationally hard problem via a reduction from balanced vertex cover.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.