Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Stackelberg Strategies for Finitely Repeated Games (2207.04192v3)

Published 9 Jul 2022 in cs.GT

Abstract: We study Stackelberg equilibria in finitely repeated games, where the leader commits to a strategy that picks actions in each round and can be adaptive to the history of play (i.e. they commit to an algorithm). In particular, we study static repeated games with no discounting. We give efficient algorithms for finding approximate Stackelberg equilibria in this setting, along with rates of convergence depending on the time horizon $T$. In many cases, these algorithms allow the leader to do much better on average than they can in the single-round Stackelberg. We give two algorithms, one computing strategies with an optimal $\frac{1}{T}$ rate at the expense of an exponential dependence on the number of actions, and another (randomized) approach computing strategies with no dependence on the number of actions but a worse dependence on $T$ of $\frac{1}{T{0.25}}$. Both algorithms build upon a linear program to produce simple automata leader strategies and induce corresponding automata best-responses for the follower. We complement these results by showing that approximating the Stackelberg value in three-player finite-horizon repeated games is a computationally hard problem via a reduction from balanced vertex cover.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube