Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seasonal Encoder-Decoder Architecture for Forecasting (2207.04113v1)

Published 8 Jul 2022 in cs.LG and cs.AI

Abstract: Deep learning (DL) in general and Recurrent neural networks (RNNs) in particular have seen high success levels in sequence based applications. This paper pertains to RNNs for time series modelling and forecasting. We propose a novel RNN architecture capturing (stochastic) seasonal correlations intelligently while capable of accurate multi-step forecasting. It is motivated from the well-known encoder-decoder (ED) architecture and multiplicative seasonal auto-regressive model. It incorporates multi-step (multi-target) learning even in the presence (or absence) of exogenous inputs. It can be employed on single or multiple sequence data. For the multiple sequence case, we also propose a novel greedy recursive procedure to build (one or more) predictive models across sequences when per-sequence data is less. We demonstrate via extensive experiments the utility of our proposed architecture both in single sequence and multiple sequence scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Avinash Achar (7 papers)
  2. Soumen Pachal (4 papers)

Summary

We haven't generated a summary for this paper yet.