Papers
Topics
Authors
Recent
2000 character limit reached

RWT-SLAM: Robust Visual SLAM for Highly Weak-textured Environments (2207.03539v1)

Published 7 Jul 2022 in cs.CV

Abstract: As a fundamental task for intelligent robots, visual SLAM has made great progress over the past decades. However, robust SLAM under highly weak-textured environments still remains very challenging. In this paper, we propose a novel visual SLAM system named RWT-SLAM to tackle this problem. We modify LoFTR network which is able to produce dense point matching under low-textured scenes to generate feature descriptors. To integrate the new features into the popular ORB-SLAM framework, we develop feature masks to filter out the unreliable features and employ KNN strategy to strengthen the matching robustness. We also retrained visual vocabulary upon new descriptors for efficient loop closing. The resulting RWT-SLAM is tested in various public datasets such as TUM and OpenLORIS, as well as our own data. The results shows very promising performance under highly weak-textured environments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.