Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MuRiT: Efficient Computation of Pathwise Persistence Barcodes in Multi-Filtered Flag Complexes via Vietoris-Rips Transformations (2207.03394v1)

Published 7 Jul 2022 in math.AT, cs.CG, math.GT, q-bio.GN, and q-bio.QM

Abstract: Multi-parameter persistent homology naturally arises in applications of persistent topology to data that come with extra information depending on additional parameters, like for example time series data. We introduce the concept of a Vietoris-Rips transformation, a method that reduces the computation of the one-parameter persistent homology of pathwise subcomplexes in multi-filtered flag complexes to the computation of the Vietoris-Rips persistent homology of certain semimetric spaces. The corresponding pathwise persistence barcodes track persistence features of the ambient multi-filtered complex and can in particular be used to recover the rank invariant in multi-parameter persistent homology. We present MuRiT, a scalable algorithm that computes the pathwise persistence barcodes of multi-filtered flag complexes by means of Vietoris-Rips transformations. Moreover, we provide an efficient software implementation of the MuRiT algorithm which resorts to Ripser for the actual computation of Vietoris-Rips persistence barcodes. To demonstrate the applicability of MuRiT to real-world datasets, we establish MuRiT as part of our CoVtRec pipeline for the surveillance of the convergent evolution of the coronavirus SARS-CoV-2 in the current COVID-19 pandemic.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.