Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MuRiT: Efficient Computation of Pathwise Persistence Barcodes in Multi-Filtered Flag Complexes via Vietoris-Rips Transformations (2207.03394v1)

Published 7 Jul 2022 in math.AT, cs.CG, math.GT, q-bio.GN, and q-bio.QM

Abstract: Multi-parameter persistent homology naturally arises in applications of persistent topology to data that come with extra information depending on additional parameters, like for example time series data. We introduce the concept of a Vietoris-Rips transformation, a method that reduces the computation of the one-parameter persistent homology of pathwise subcomplexes in multi-filtered flag complexes to the computation of the Vietoris-Rips persistent homology of certain semimetric spaces. The corresponding pathwise persistence barcodes track persistence features of the ambient multi-filtered complex and can in particular be used to recover the rank invariant in multi-parameter persistent homology. We present MuRiT, a scalable algorithm that computes the pathwise persistence barcodes of multi-filtered flag complexes by means of Vietoris-Rips transformations. Moreover, we provide an efficient software implementation of the MuRiT algorithm which resorts to Ripser for the actual computation of Vietoris-Rips persistence barcodes. To demonstrate the applicability of MuRiT to real-world datasets, we establish MuRiT as part of our CoVtRec pipeline for the surveillance of the convergent evolution of the coronavirus SARS-CoV-2 in the current COVID-19 pandemic.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube