Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Speech Emotion: Investigating Model Representations, Multi-Task Learning and Knowledge Distillation (2207.03334v1)

Published 2 Jul 2022 in eess.AS, cs.AI, cs.CL, cs.LG, and cs.SD

Abstract: Estimating dimensional emotions, such as activation, valence and dominance, from acoustic speech signals has been widely explored over the past few years. While accurate estimation of activation and dominance from speech seem to be possible, the same for valence remains challenging. Previous research has shown that the use of lexical information can improve valence estimation performance. Lexical information can be obtained from pre-trained acoustic models, where the learned representations can improve valence estimation from speech. We investigate the use of pre-trained model representations to improve valence estimation from acoustic speech signal. We also explore fusion of representations to improve emotion estimation across all three emotion dimensions: activation, valence and dominance. Additionally, we investigate if representations from pre-trained models can be distilled into models trained with low-level features, resulting in models with a less number of parameters. We show that fusion of pre-trained model embeddings result in a 79% relative improvement in concordance correlation coefficient CCC on valence estimation compared to standard acoustic feature baseline (mel-filterbank energies), while distillation from pre-trained model embeddings to lower-dimensional representations yielded a relative 12% improvement. Such performance gains were observed over two evaluation sets, indicating that our proposed architecture generalizes across those evaluation sets. We report new state-of-the-art "text-free" acoustic-only dimensional emotion estimation $CCC$ values on two MSP-Podcast evaluation sets.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.