Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Barriers for Faster Dimensionality Reduction (2207.03304v1)

Published 7 Jul 2022 in cs.DS

Abstract: The Johnson-Lindenstrauss transform allows one to embed a dataset of $n$ points in $\mathbb{R}d$ into $\mathbb{R}m,$ while preserving the pairwise distance between any pair of points up to a factor $(1 \pm \varepsilon)$, provided that $m = \Omega(\varepsilon{-2} \lg n)$. The transform has found an overwhelming number of algorithmic applications, allowing to speed up algorithms and reducing memory consumption at the price of a small loss in accuracy. A central line of research on such transforms, focus on developing fast embedding algorithms, with the classic example being the Fast JL transform by Ailon and Chazelle. All known such algorithms have an embedding time of $\Omega(d \lg d)$, but no lower bounds rule out a clean $O(d)$ embedding time. In this work, we establish the first non-trivial lower bounds (of magnitude $\Omega(m \lg m)$) for a large class of embedding algorithms, including in particular most known upper bounds.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.