Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Kronecker Product Approximation of Operators in Spectral Norm via Alternating SDP (2207.03186v2)

Published 7 Jul 2022 in math.OC, cs.NA, math.AG, and math.NA

Abstract: The decomposition or approximation of a linear operator on a matrix space as a sum of Kronecker products plays an important role in matrix equations and low-rank modeling. The approximation problem in Frobenius norm admits a well-known solution via the singular value decomposition. However, the approximation problem in spectral norm, which is more natural for linear operators, is much more challenging. In particular, the Frobenius norm solution can be far from optimal in spectral norm. We describe an alternating optimization method based on semidefinite programming to obtain high-quality approximations in spectral norm, and we present computational experiments to illustrate the advantages of our approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.