Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Towards the Practical Utility of Federated Learning in the Medical Domain (2207.03075v5)

Published 7 Jul 2022 in cs.LG and cs.AI

Abstract: Federated learning (FL) is an active area of research. One of the most suitable areas for adopting FL is the medical domain, where patient privacy must be respected. Previous research, however, does not provide a practical guide to applying FL in the medical domain. We propose empirical benchmarks and experimental settings for three representative medical datasets with different modalities: longitudinal electronic health records, skin cancer images, and electrocardiogram signals. The likely users of FL such as medical institutions and IT companies can take these benchmarks as guides for adopting FL and minimize their trial and error. For each dataset, each client data is from a different source to preserve real-world heterogeneity. We evaluate six FL algorithms designed for addressing data heterogeneity among clients, and a hybrid algorithm combining the strengths of two representative FL algorithms. Based on experiment results from three modalities, we discover that simple FL algorithms tend to outperform more sophisticated ones, while the hybrid algorithm consistently shows good, if not the best performance. We also find that a frequent global model update leads to better performance under a fixed training iteration budget. As the number of participating clients increases, higher cost is incurred due to increased IT administrators and GPUs, but the performance consistently increases. We expect future users will refer to these empirical benchmarks to design the FL experiments in the medical domain considering their clinical tasks and obtain stronger performance with lower costs.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.