Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries (2207.02817v1)

Published 6 Jul 2022 in cs.DS

Abstract: We study the problem of estimating the number of edges in an $n$-vertex graph, accessed via the Bipartite Independent Set query model introduced by Beame et al. (ITCS '18). In this model, each query returns a Boolean, indicating the existence of at least one edge between two specified sets of nodes. We present a non-adaptive algorithm that returns a $(1\pm \epsilon)$ relative error approximation to the number of edges, with query complexity $\tilde O(\epsilon{-5}\log{5} n )$, where $\tilde O(\cdot)$ hides $\textrm{poly}(\log \log n)$ dependencies. This is the first non-adaptive algorithm in this setting achieving $\textrm{poly}(1/\epsilon,\log n)$ query complexity. Prior work requires $\Omega(\log2 n)$ rounds of adaptivity. We avoid this by taking a fundamentally different approach, inspired by work on single-pass streaming algorithms. Moreover, for constant $\epsilon$, our query complexity significantly improves on the best known adaptive algorithm due to Bhattacharya et al. (STACS '22), which requires $O(\epsilon{-2} \log{11} n)$ queries. Building on our edge estimation result, we give the first non-adaptive algorithm for outputting a nearly uniformly sampled edge with query complexity $\tilde O(\epsilon{-6} \log{6} n)$, improving on the works of Dell et al. (SODA '20) and Bhattacharya et al. (STACS '22), which require $\Omega(\log3 n)$ rounds of adaptivity. Finally, as a consequence of our edge sampling algorithm, we obtain a $\tilde O(n\log^ 8 n)$ query algorithm for connectivity, using two rounds of adaptivity. This improves on a three-round algorithm of Assadi et al. (ESA '21) and is tight; there is no non-adaptive algorithm for connectivity making $o(n2)$ queries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.