Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries (2207.02817v1)

Published 6 Jul 2022 in cs.DS

Abstract: We study the problem of estimating the number of edges in an $n$-vertex graph, accessed via the Bipartite Independent Set query model introduced by Beame et al. (ITCS '18). In this model, each query returns a Boolean, indicating the existence of at least one edge between two specified sets of nodes. We present a non-adaptive algorithm that returns a $(1\pm \epsilon)$ relative error approximation to the number of edges, with query complexity $\tilde O(\epsilon{-5}\log{5} n )$, where $\tilde O(\cdot)$ hides $\textrm{poly}(\log \log n)$ dependencies. This is the first non-adaptive algorithm in this setting achieving $\textrm{poly}(1/\epsilon,\log n)$ query complexity. Prior work requires $\Omega(\log2 n)$ rounds of adaptivity. We avoid this by taking a fundamentally different approach, inspired by work on single-pass streaming algorithms. Moreover, for constant $\epsilon$, our query complexity significantly improves on the best known adaptive algorithm due to Bhattacharya et al. (STACS '22), which requires $O(\epsilon{-2} \log{11} n)$ queries. Building on our edge estimation result, we give the first non-adaptive algorithm for outputting a nearly uniformly sampled edge with query complexity $\tilde O(\epsilon{-6} \log{6} n)$, improving on the works of Dell et al. (SODA '20) and Bhattacharya et al. (STACS '22), which require $\Omega(\log3 n)$ rounds of adaptivity. Finally, as a consequence of our edge sampling algorithm, we obtain a $\tilde O(n\log^ 8 n)$ query algorithm for connectivity, using two rounds of adaptivity. This improves on a three-round algorithm of Assadi et al. (ESA '21) and is tight; there is no non-adaptive algorithm for connectivity making $o(n2)$ queries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube