Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

An Unsupervised STDP-based Spiking Neural Network Inspired By Biologically Plausible Learning Rules and Connections (2207.02727v2)

Published 6 Jul 2022 in cs.NE

Abstract: The backpropagation algorithm has promoted the rapid development of deep learning, but it relies on a large amount of labeled data and still has a large gap with how humans learn. The human brain can quickly learn various conceptual knowledge in a self-organized and unsupervised manner, accomplished through coordinating various learning rules and structures in the human brain. Spike-timing-dependent plasticity (STDP) is a general learning rule in the brain, but spiking neural networks (SNNs) trained with STDP alone is inefficient and perform poorly. In this paper, taking inspiration from short-term synaptic plasticity, we design an adaptive synaptic filter and introduce the adaptive spiking threshold as the neuron plasticity to enrich the representation ability of SNNs. We also introduce an adaptive lateral inhibitory connection to adjust the spikes balance dynamically to help the network learn richer features. To speed up and stabilize the training of unsupervised spiking neural networks, we design a samples temporal batch STDP (STB-STDP), which updates weights based on multiple samples and moments. By integrating the above three adaptive mechanisms and STB-STDP, our model greatly accelerates the training of unsupervised spiking neural networks and improves the performance of unsupervised SNNs on complex tasks. Our model achieves the current state-of-the-art performance of unsupervised STDP-based SNNs in the MNIST and FashionMNIST datasets. Further, we tested on the more complex CIFAR10 dataset, and the results fully illustrate the superiority of our algorithm. Our model is also the first work to apply unsupervised STDP-based SNNs to CIFAR10. At the same time, in the small-sample learning scenario, it will far exceed the supervised ANN using the same structure.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.