Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximating Dasgupta Cost in Sublinear Time from a Few Random Seeds (2207.02581v2)

Published 6 Jul 2022 in cs.DS

Abstract: Testing graph cluster structure has been a central object of study in property testing since the foundational work of Goldreich and Ron [STOC'96] on expansion testing, i.e. the problem of distinguishing between a single cluster (an expander) and a graph that is far from a single cluster. More generally, a $(k, \epsilon)$-clusterable graph $G$ is a graph whose vertex set admits a partition into $k$ induced expanders, each with outer conductance bounded by $\epsilon$. A recent line of work initiated by Czumaj, Peng and Sohler [STOC'15] has shown how to test whether a graph is close to $(k, \epsilon)$-clusterable, and to locally determine which cluster a given vertex belongs to with misclassification rate $\approx \epsilon$, but no sublinear time algorithms for learning the structure of inter-cluster connections are known. As a simple example, can one locally distinguish between the `cluster graph' forming a line and a clique? In this paper, we consider the problem of testing the hierarchical cluster structure of $(k, \epsilon)$-clusterable graphs in sublinear time. Our measure of hierarchical clusterability is the well-established Dasgupta cost, and our main result is an algorithm that approximates Dasgupta cost of a $(k, \epsilon)$-clusterable graph in sublinear time, using a small number of randomly chosen seed vertices for which cluster labels are known. Our main result is an $O(\sqrt{\log k})$ approximation to Dasgupta cost of $G$ in $\approx n{1/2+O(\epsilon)}$ time using $\approx n{1/3}$ seeds, effectively giving a sublinear time simulation of the algorithm of Charikar and Chatziafratis [SODA'17] on clusterable graphs. To the best of our knowledge, ours is the first result on approximating the hierarchical clustering properties of such graphs in sublinear time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: