Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Edge-Of-Chaos Learning Achieved by Ion-Electron Coupled Dynamics in an Ion-Gating Reservoir (2207.02573v1)

Published 6 Jul 2022 in cs.ET and physics.app-ph

Abstract: Physical reservoir computing has recently been attracting attention for its ability to significantly reduce the computational resources required to process time-series data. However, the physical reservoirs that have been reported to date have had insufficient expression power, and most of them have a large volume, which makes their practical application difficult. Herein we describe the development of a Li+-electrolyte based ion-gating reservoir (IGR), with ion-electron coupled dynamics, for use in high performance physical reservoir computing. A variety of synaptic responses were obtained in response to past experience, which responses were stored as transient charge density patterns in an electric double layer, at the Li+-electrolyte/diamond interface. Performance, which was tested using a nonlinear autoregressive moving-average (NARMA) task, was found to be excellent, with a NMSE of 0.023 for NARMA2, which is the highest for any physical reservoir reported to date. The maximum Lyapunov exponent of the IGR was 0.0083: the edge of chaos state enabling the best computational capacity. The IGR described herein opens the way for high-performance and integrated neural network devices.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube