Papers
Topics
Authors
Recent
2000 character limit reached

SNeRF: Stylized Neural Implicit Representations for 3D Scenes (2207.02363v1)

Published 5 Jul 2022 in cs.CV

Abstract: This paper presents a stylized novel view synthesis method. Applying state-of-the-art stylization methods to novel views frame by frame often causes jittering artifacts due to the lack of cross-view consistency. Therefore, this paper investigates 3D scene stylization that provides a strong inductive bias for consistent novel view synthesis. Specifically, we adopt the emerging neural radiance fields (NeRF) as our choice of 3D scene representation for their capability to render high-quality novel views for a variety of scenes. However, as rendering a novel view from a NeRF requires a large number of samples, training a stylized NeRF requires a large amount of GPU memory that goes beyond an off-the-shelf GPU capacity. We introduce a new training method to address this problem by alternating the NeRF and stylization optimization steps. Such a method enables us to make full use of our hardware memory capacity to both generate images at higher resolution and adopt more expressive image style transfer methods. Our experiments show that our method produces stylized NeRFs for a wide range of content, including indoor, outdoor and dynamic scenes, and synthesizes high-quality novel views with cross-view consistency.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.