Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalization to translation shifts: a study in architectures and augmentations (2207.02349v2)

Published 5 Jul 2022 in cs.CV and cs.LG

Abstract: We study how effective data augmentation is at capturing the inductive bias of carefully designed network architectures for spatial translation invariance. We evaluate various image classification architectures (antialiased, convolutional, vision transformer, and fully connected MLP networks) and data augmentation techniques towards generalization to large translation shifts. We observe that: (a) without data augmentation, all architectures, including convolutional networks with antialiased modification suffer some degradation in performance when evaluated on translated test distributions. Understandably, both the in-distribution accuracy and degradation to shifts is significantly worse for non-convolutional models. (b) The robustness of performance is improved by even a minimal augmentation of $4$ pixel random crop across all architectures. In some instances, even $1-2$ pixel random crop is sufficient. This suggests that there is a form of meta generalization from augmentation. For non-convolutional architectures, while the absolute accuracy is still low with this basic augmentation, we see substantial improvements in robustness to translation shifts. (c) With a sufficiently advanced augmentation pipeline ($4$ pixel crop+RandAugmentation+Erasing+MixUp), all architectures can be trained to have competitive performance in terms of in-distribution accuracy as well as generalization to large translation shifts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube