Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generating Game Levels of Diverse Behaviour Engagement (2207.02100v1)

Published 5 Jul 2022 in cs.AI

Abstract: Recent years, there has been growing interests in experience-driven procedural level generation. Various metrics have been formulated to model player experience and help generate personalised levels. In this work, we question whether experience metrics can adapt to agents with different personas. We start by reviewing existing metrics for evaluating game levels. Then, focusing on platformer games, we design a framework integrating various agents and evaluation metrics. Experimental studies on \emph{Super Mario Bros.} indicate that using the same evaluation metrics but agents with different personas can generate levels for particular persona. It implies that, for simple games, using a game-playing agent of specific player archetype as a level tester is probably all we need to generate levels of diverse behaviour engagement.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.