Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

GLANCE: Global to Local Architecture-Neutral Concept-based Explanations (2207.01917v1)

Published 5 Jul 2022 in cs.CV and cs.AI

Abstract: Most of the current explainability techniques focus on capturing the importance of features in input space. However, given the complexity of models and data-generating processes, the resulting explanations are far from being complete', in that they lack an indication of feature interactions and visualization of theireffect'. In this work, we propose a novel twin-surrogate explainability framework to explain the decisions made by any CNN-based image classifier (irrespective of the architecture). For this, we first disentangle latent features from the classifier, followed by aligning these features to observed/human-defined context' features. These aligned features form semantically meaningful concepts that are used for extracting a causal graph depicting theperceived' data-generating process, describing the inter- and intra-feature interactions between unobserved latent features and observed context' features. This causal graph serves as a global model from which local explanations of different forms can be extracted. Specifically, we provide a generator to visualize theeffect' of interactions among features in latent space and draw feature importance therefrom as local explanations. Our framework utilizes adversarial knowledge distillation to faithfully learn a representation from the classifiers' latent space and use it for extracting visual explanations. We use the styleGAN-v2 architecture with an additional regularization term to enforce disentanglement and alignment. We demonstrate and evaluate explanations obtained with our framework on Morpho-MNIST and on the FFHQ human faces dataset. Our framework is available at \url{https://github.com/koriavinash1/GLANCE-Explanations}.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.