Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

WeSinger 2: Fully Parallel Singing Voice Synthesis via Multi-Singer Conditional Adversarial Training (2207.01886v8)

Published 5 Jul 2022 in cs.SD and eess.AS

Abstract: This paper aims to introduce a robust singing voice synthesis (SVS) system to produce very natural and realistic singing voices efficiently by leveraging the adversarial training strategy. On one hand, we designed simple but generic random area conditional discriminators to help supervise the acoustic model, which can effectively avoid the over-smoothed spectrogram prediction and improve the expressiveness of SVS. On the other hand, we subtly combined the spectrogram with the frame-level linearly-interpolated F0 sequence as the input for the neural vocoder, which is then optimized with the help of multiple adversarial conditional discriminators in the waveform domain and multi-scale distance functions in the frequency domain. The experimental results and ablation studies concluded that, compared with our previous auto-regressive work, our new system can produce high-quality singing voices efficiently by fine-tuning different singing datasets covering from several minutes to a few hours. A large number of synthesized songs with different timbres are available online https://zzw922cn.github.io/wesinger2 and we highly recommend readers to listen to them.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.