Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Confluent Vandermonde with Arnoldi (2207.01852v1)

Published 5 Jul 2022 in math.NA and cs.NA

Abstract: In this note, we extend the Vandermonde with Arnoldi method recently advocated by P. D. Brubeck, Y. Nakatsukasa and L. N. Trefethen to dealing with the confluent Vandermonde matrix. To apply the Arnoldi process, it is critical to find a Krylov subspace which generates the column space of the confluent Vandermonde matrix. A theorem is established for such Krylov subspaces for any order derivatives. This enables us to compute the derivatives of high degree polynomials to high precision. It also makes many applications involving derivatives possible, as illustrated by numerical examples. We note that one of the approaches orthogonalizes only the function values and is equivalent to the formula given by P. D. Brubeck and L. N. Trefethen. The other approach orthogonalizes the Hermite data. About which approach is preferable to another, we made the comparison, and the result is problem dependent.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.