Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Glow-WaveGAN 2: High-quality Zero-shot Text-to-speech Synthesis and Any-to-any Voice Conversion (2207.01832v1)

Published 5 Jul 2022 in cs.SD and eess.AS

Abstract: The zero-shot scenario for speech generation aims at synthesizing a novel unseen voice with only one utterance of the target speaker. Although the challenges of adapting new voices in zero-shot scenario exist in both stages -- acoustic modeling and vocoder, previous works usually consider the problem from only one stage. In this paper, we extend our previous Glow-WaveGAN to Glow-WaveGAN 2, aiming to solve the problem from both stages for high-quality zero-shot text-to-speech and any-to-any voice conversion. We first build a universal WaveGAN model for extracting latent distribution $p(z)$ of speech and reconstructing waveform from it. Then a flow-based acoustic model only needs to learn the same $p(z)$ from texts, which naturally avoids the mismatch between the acoustic model and the vocoder, resulting in high-quality generated speech without model fine-tuning. Based on a continuous speaker space and the reversible property of flows, the conditional distribution can be obtained for any speaker, and thus we can further conduct high-quality zero-shot speech generation for new speakers. We particularly investigate two methods to construct the speaker space, namely pre-trained speaker encoder and jointly-trained speaker encoder. The superiority of Glow-WaveGAN 2 has been proved through TTS and VC experiments conducted on LibriTTS corpus and VTCK corpus.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.