Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Vector Field-based Collision Avoidance for Moving Obstacles with Time-Varying Elliptical Shape (2207.01747v2)

Published 4 Jul 2022 in eess.SY and cs.SY

Abstract: This paper presents an algorithm for local motion planning in environments populated by moving elliptical obstacles whose velocity, shape and size are fully known but may change with time. We base the algorithm on a collision avoidance vector field (CAVF) that aims to steer an agent to a desired final state whose motion is described by a double integrator kinematic model. In addition to handling multiple obstacles, the method is applicable in bounded environments for more realistic applications (e.g., motion planning inside a building). We also incorporate a method to deal with agents whose control input is limited so that they safely navigate around the obstacles. To showcase our approach, extensive simulations results are presented in 2D and 3D scenarios.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.