High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent (2207.01560v3)
Abstract: In this paper, we study differentially private empirical risk minimization (DP-ERM). It has been shown that the worst-case utility of DP-ERM reduces polynomially as the dimension increases. This is a major obstacle to privately learning large machine learning models. In high dimension, it is common for some model's parameters to carry more information than others. To exploit this, we propose a differentially private greedy coordinate descent (DP-GCD) algorithm. At each iteration, DP-GCD privately performs a coordinate-wise gradient step along the gradients' (approximately) greatest entry. We show theoretically that DP-GCD can achieve a logarithmic dependence on the dimension for a wide range of problems by naturally exploiting their structural properties (such as quasi-sparse solutions). We illustrate this behavior numerically, both on synthetic and real datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.