Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reaching optimal distributed estimation through myopic self-confidence adaptation (2207.01384v2)

Published 4 Jul 2022 in math.OC, cs.GT, cs.SI, cs.SY, and eess.SY

Abstract: Consider discrete-time linear distributed averaging dynamics, whereby agents in a network start with uncorrelated and unbiased noisy measurements of a common underlying parameter (state of the world) and iteratively update their estimates following a non-Bayesian rule. Specifically, let every agent update her estimate to a convex combination of her own current estimate and those of her neighbors in the network. As a result of this iterative averaging, each agent obtains an asymptotic estimate of the state of the world, and the variance of this individual estimate depends on the matrix of weights the agents assign to self and to the others. We study a game-theoretic multi-objective optimization problem whereby every agent seeks to choose her self-weight in such a convex combination in a way to minimize the variance of her asymptotic estimate of the state of the unknown parameters. Assuming that the relative influence weights assigned by the agents to their neighbors in the network remain fixed and form an irreducible and aperiodic relative influence matrix, we characterize the Pareto frontier of the problem, as well as the set of Nash equilibria in the resulting game.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.