Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RAF: Recursive Adversarial Attacks on Face Recognition Using Extremely Limited Queries (2207.01149v1)

Published 4 Jul 2022 in cs.CV

Abstract: Recent successful adversarial attacks on face recognition show that, despite the remarkable progress of face recognition models, they are still far behind the human intelligence for perception and recognition. It reveals the vulnerability of deep convolutional neural networks (CNNs) as state-of-the-art building block for face recognition models against adversarial examples, which can cause certain consequences for secure systems. Gradient-based adversarial attacks are widely studied before and proved to be successful against face recognition models. However, finding the optimized perturbation per each face needs to submitting the significant number of queries to the target model. In this paper, we propose recursive adversarial attack on face recognition using automatic face warping which needs extremely limited number of queries to fool the target model. Instead of a random face warping procedure, the warping functions are applied on specific detected regions of face like eyebrows, nose, lips, etc. We evaluate the robustness of proposed method in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but hard-label predictions and confidence scores are provided by the target model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.