Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Recipe for Fast Large-scale SVM Training: Polishing, Parallelism, and more RAM! (2207.01016v1)

Published 3 Jul 2022 in cs.LG

Abstract: Support vector machines (SVMs) are a standard method in the machine learning toolbox, in particular for tabular data. Non-linear kernel SVMs often deliver highly accurate predictors, however, at the cost of long training times. That problem is aggravated by the exponential growth of data volumes over time. It was tackled in the past mainly by two types of techniques: approximate solvers, and parallel GPU implementations. In this work, we combine both approaches to design an extremely fast dual SVM solver. We fully exploit the capabilities of modern compute servers: many-core architectures, multiple high-end GPUs, and large random access memory. On such a machine, we train a large-margin classifier on the ImageNet data set in 24 minutes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)