Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Architecture Augmentation for Performance Predictor Based on Graph Isomorphism (2207.00987v1)

Published 3 Jul 2022 in cs.NE

Abstract: Neural Architecture Search (NAS) can automatically design architectures for deep neural networks (DNNs) and has become one of the hottest research topics in the current machine learning community. However, NAS is often computationally expensive because a large number of DNNs require to be trained for obtaining performance during the search process. Performance predictors can greatly alleviate the prohibitive cost of NAS by directly predicting the performance of DNNs. However, building satisfactory performance predictors highly depends on enough trained DNN architectures, which are difficult to obtain in most scenarios. To solve this critical issue, we propose an effective DNN architecture augmentation method named GIAug in this paper. Specifically, we first propose a mechanism based on graph isomorphism, which has the merit of efficiently generating a factorial of $\boldsymbol n$ (i.e., $\boldsymbol n!$) diverse annotated architectures upon a single architecture having $\boldsymbol n$ nodes. In addition, we also design a generic method to encode the architectures into the form suitable to most prediction models. As a result, GIAug can be flexibly utilized by various existing performance predictors-based NAS algorithms. We perform extensive experiments on CIFAR-10 and ImageNet benchmark datasets on small-, medium- and large-scale search space. The experiments show that GIAug can significantly enhance the performance of most state-of-the-art peer predictors. In addition, GIAug can save three magnitude order of computation cost at most on ImageNet yet with similar performance when compared with state-of-the-art NAS algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube