Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Low probability states, data statistics, and entropy estimation (2207.00962v1)

Published 3 Jul 2022 in physics.data-an, cs.IT, math.IT, math.ST, and stat.TH

Abstract: A fundamental problem in analysis of complex systems is getting a reliable estimate of entropy of their probability distributions over the state space. This is difficult because unsampled states can contribute substantially to the entropy, while they do not contribute to the Maximum Likelihood estimator of entropy, which replaces probabilities by the observed frequencies. Bayesian estimators overcome this obstacle by introducing a model of the low-probability tail of the probability distribution. Which statistical features of the observed data determine the model of the tail, and hence the output of such estimators, remains unclear. Here we show that well-known entropy estimators for probability distributions on discrete state spaces model the structure of the low probability tail based largely on few statistics of the data: the sample size, the Maximum Likelihood estimate, the number of coincidences among the samples, the dispersion of the coincidences. We derive approximate analytical entropy estimators for undersampled distributions based on these statistics, and we use the results to propose an intuitive understanding of how the Bayesian entropy estimators work.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube