Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Convergence of Gradient Descent Ascent: A Tight Local Analysis (2207.00957v1)

Published 3 Jul 2022 in math.OC, cs.LG, and stat.ML

Abstract: Gradient Descent Ascent (GDA) methods are the mainstream algorithms for minimax optimization in generative adversarial networks (GANs). Convergence properties of GDA have drawn significant interest in the recent literature. Specifically, for $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x};\mathbf{y})$ where $f$ is strongly-concave in $\mathbf{y}$ and possibly nonconvex in $\mathbf{x}$, (Lin et al., 2020) proved the convergence of GDA with a stepsize ratio $\eta_{\mathbf{y}}/\eta_{\mathbf{x}}=\Theta(\kappa2)$ where $\eta_{\mathbf{x}}$ and $\eta_{\mathbf{y}}$ are the stepsizes for $\mathbf{x}$ and $\mathbf{y}$ and $\kappa$ is the condition number for $\mathbf{y}$. While this stepsize ratio suggests a slow training of the min player, practical GAN algorithms typically adopt similar stepsizes for both variables, indicating a wide gap between theoretical and empirical results. In this paper, we aim to bridge this gap by analyzing the \emph{local convergence} of general \emph{nonconvex-nonconcave} minimax problems. We demonstrate that a stepsize ratio of $\Theta(\kappa)$ is necessary and sufficient for local convergence of GDA to a Stackelberg Equilibrium, where $\kappa$ is the local condition number for $\mathbf{y}$. We prove a nearly tight convergence rate with a matching lower bound. We further extend the convergence guarantees to stochastic GDA and extra-gradient methods (EG). Finally, we conduct several numerical experiments to support our theoretical findings.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.